














the data bases, the statistics, the performance measures, and the weights to be given to 

each evaluation component. The statistical procedures discussed in the interim 

procedures document are still believed to be sound. However, if computer resources 

are available, the newer statistical procedures described in this document (see also 

reference 7) may be more appropriate. 

The statistical approach for determining which model(s) perform better than other 

competing models involves two steps. The first step is a screening test to eliminate 

models that fail to perform at a minimum operational level. Although a completely 

objective basis for choosing a minimum level of performance is lacking, accumulated 

results from a number of model evaluation studies suggests that a factor-of-two is a 

reasonable performance target a model should achieve before it is used for refined 

regulatory analyses. The second step applies only to those models that pass the 

screening test. The analysis is based on a computer intensive resampling technique 

known as bootstrapping which generates a probability distribution of feasible data 

outcomes. The outcomes are used to calculate a composite measure of performance 

that combines information among averaging periods, data bases and integrates both the 

scientific and operational components of model performance. Comparison of the 

distributions of the composite measures of performance for each pair of models 

provides evidence of the degree to which one model performs better than other 

competing models. 
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Appendix A provides an example application of the protocol using data from six 

large mid-western power plants to compare the performance of two rural air quality 

models. 
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2.0 SCREENING TEST 

Each competing model is subjected to a screening test to determine if it meets 

minimum standards for operational performance. The fractional bias is used as the 

performance measure. The general expression for the fractional bias (FB) is given by: 

FB = 2 [ OB - PR
] 

OB+ PR 

The fractional bias of the average is computed using this equation where OB and 

PR refer to the averages of the observed and predicted highest 25 values. The same 

expression is used to calculate the fractional bias of the standard deviation where OB 

then refers to the standard deviation of the 25 highest observed values and PR refers to 

the standard deviation of the 25 highest predicted values. 

The fractional bias has been selected as the basic measure of performance in this 

evaluation because it has two desirable features. First, the fractional bias is 

symmetrical and bounded. Values for the fractional bias range between -2.0 (extreme 

overprediction) and +2.0 (extreme underprediction). Second, the fractional bias is a 

dimensionless number which is convenient for comparing the results from studies 

involving different concentration levels or even different pollutants. 

Figure 1 is a graphical illustration of model performance in which the fractional 

bias of the standard deviation (y-axis) is plotted against the fractional bias of the 

average (x-axis). M(?dels that plot close to the center of the graph (0,0) are relatively 
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free from bias, while models that plot further away from the center tend to over or 

underpredict. Values 
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Figure 1. Example fractional bias plot for a given averaging period, e.g., 3-hour. 
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of the fractional bias that are equal to -0.67 are equivalent to overpredictions by a 

factor-of-two, while values that are equal to +0.67 are equivalent to underpredictions 

by a factor-of-two. 

Since neither underprediction nor overprediction is desirable, the calculations are 

simplified by determining the absolute fractional bias (AFB) which is the absolute 

value of the fractional biases computed for the average and the standard deviation. 

The absolute fractional bias is calculated for each averaging period for which ambient 

standards or goals have been established. Separate calculations are made using 

information from each available data base. If the computed AFB statistic tends to 

exceed the value of 0.67 for any averaging period or data base, consideration may be 

given to excluding that model from further evaluation due to its limited credibility for 

refined regulatory analysis. 

3.0 ST A TISTICAL TEST 

Models that pass the screening test are then subjected to a more comprehensive 

statistical comparison that involves both an operational and scientific component. The 

rationale for the operational component is to measure the model's ability to estimate 

concentration statistics most directly used for regulatory purposes. For a pollutant such 

as S02 for which short-term ambient standards exist, the statistic of interest involves 

the network-wide highest concentrations. In this example, the precise time, location 

and meteorological condition is of minor concern compared to the magnitude of the 

highest concentrations actually occurring. The scientific component is necessary to 

evaluate the model's ability to perform accurately throughout (1) the range of 

7 



meteorological conditions that might be expected to occur and (2) the geographic area 

immediately surrounding the source(s) for which model estimates are needed. 

Because of the emphasis on highest concentrations, a robust test statistic is 

calculated that represents a "smoothed" estimate of the highest concentration.* A 

performance measure, based on the fractional bias, is calculated which compares the 

air quality and model test statistics. The performance measures obtained from the 

operational and scientific components and from among the various data bases are 

combined to create a composite performance measure. The bootstrap procedure is used 

to estimate the standard error for the composite performance measure for each model. 

Using the estimate of standard error obtained from the bootstrap, the statistical 

significance of the difference between models is assessed. 

Test Statistic 

The test statistic used to compare the performance of the models is a robust 

estimate of the highest concentration (RHC) using the largest concentrations within a 

given data category. The same robust estimator is used in both the operational and 

scientific phases of the statistical comparison. The robust estimate is based on a tail 

exponential fit to the upper end of the distribution and is computed as follows:7•

8 

"'Typically, the network-wide highest value from among the annual second highest 
concentrations at each monitor is used to determine attainment/non-attainment of ambient 
standards. Because the highest concentration value is subject to extreme variations, the 
robust highest concentration is preferable in this analysis because of its stability. Also, 
the bootstrap distribution of robust highest concentrations is not artificially bounded at the 
maximum concentratj.on, which allows for a continuous range of concentrations that in fact 
may exceed the highest concentration. 
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where: 

RHC = X(N) + [X - X(N)] In [ 3N - l ] ,
2 

:x = average of the N-1 largest values 
X(N) = Nth largest value 
N = number of values exceeding the threshold value (N � 26) 

The value of N is nominally set equal to 26 so that the number of values averaged 

(X) is arbitrarily 25. The value of N may be lower than 26 whenever the number of

values exceeding the threshold is lower than 26. Whenever N is less than 3, the RHC 

statistic is set equal to the threshold value where the threshold is defined as a 

concentration near background which has no impact on the determination of the robust 

highest concentration. 

The robust estimator of the highest value is strongly related to the two statistics 

used in the screening test. Increasing values of the average and standard deviation 

have the effect of increasing the central location and spread of the 25 highest values. 

Increases in the central location and spread tends to increase the magnitude of the 

highest value within the 25 highest concentrations. The robust highest value in effect 

is a direct measurable result of the composite impact of the central location of the 

highest values and their spread about that central location. 

Performance Measures 

The operational component of the evaluation compares the performance of the 

models in terms of the largest network-wide RHC test statistic. The robust highest 

value is calculated separately for each monitoring station within the network. The 
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largest measurement based RHC value in the monitoring network and the largest model 

based RHC value from the model estimates are used to calculate the absolute fractional 

bias for each model. An absolute fractional bias is calculated for each averaging 

period for which short-term ambient standards exist, e.g., 3- and 24-hour. 

The scientific component of the evaluation is also based on the absolute fractional 

bias as the basic measure of performance. The absolute fractional bias for each model 

is calculated using the robust highest statistic determined for each meteorological 

condition and monitoring station. Only data for 1-hour averaging periods are used in 

this component of the evaluation. The meteorological conditions used are a function of 

atmospheric stability and wind speed. Six unique meteorological conditions are 

defined from two wind speed categories (below and above 4.0 m/s) and three stability 

categories: unstable (A,B,C), neutral (D), and stable (E and F). Other categories or 

combinations of meteorological conditions might be chosen at the discretion of the 

evaluator. 

Composite Performance Measures 

A composite performance measure is computed for each model as a weighted 

linear combination of the individual fractional bias components. Within the operational 

evaluation component, results for the various averaging periods are given equal weight. 

For the scientific component, each of the combinations of the meteorological 

conditions is given equal weight. Because the operational evaluation component is 

deemed to be the more important of the two, it is given a weight that is twice the 

weight of the scientific component. Finally, results from the various data bases are 
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given equal weight unless it is determined that differences in such factors as data 

quality and geographical coverage of the monitoring networks suggest otherwise. The 

algebraic expression for the composite performance measure (CPM) is: 

where: 

1 ..,..___ 2 (AFB)
3 

+ (AFB)
24 

CPM = - (AFB).. + - [-----] , 
3 

IJ 
3 2 

(AFB)ij 
= Absolute Fractional Bias for meteorological category i at station j 

(AFB)3 = Absolute Fractional Bias for 3-hour averages 
(AFBh4 = Absolute Fractional Bias for 24-hour averages 

Because the purpose of the analysis is to contrast the performance among the 

models, the composite performance measure is used to calculate pairs of differences 

between the models. For discussion purposes, the difference between the composite 

performance of one model and another is referred to as the model comparison measure. 

The expression for the model comparison measure is given by: 

where: 

(CPM)A = Composite Performance Measure for Model A 
(CPM)B = Composite Performance Measure for Model B 

When more that two models are being compared simultaneously, the number of 

model comparison measure statistics is equal to the total of the number of unique 

combinations of two models. For example, for three models, three comparison 

measures are computed, for four models, six comparison measures are computed, etc. 

The model comparison measure is used in judging the statistical significance of the 

apparent superiority <?f any one particular model over another. 
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Standard Error Determination 

The yardstick used to determine if the composite difference between models is 

statistically significant is known as the standard error. At the simplest level, the ratio 

of the composite difference to the standard error provides a convenient measure of the 

significance for the resulting difference. Nominally, ratios that are larger than ± 1.7 

are significant, while values < 1. 7 indicate no significance at approximately the 90 

percent level. 

Because the model comparison measure is a rather involved statistic, the usual 

statistical methods for estimating the standard error do not apply. Fortunately, 

computing speeds have increased so that resampling techniques such as the "jackknife" 

and "bootstrap" are feasible methods for estimating the standard error and for 

determining confidence limits. Because of its simplicity, the blocked bootstrap 

method9 is used to generate an estimate of the standard error. The bootstrap is 

basically a resampling technique whereby the desired performance measure is 

recalculated for a number "trial" years. To do this, the original year of data (nominally 

365 days), is partitioned into 3-day blocks. Within each season, 3-day blocks 

(approximately 30 blocks per season) are sampled with replacement until a total season 

is created. This process is repeated using each of the four seasons to construct a 

complete bootstrap year. Three day blocks are chosen to preserve day to day 

meteorological persistence, while sampling within seasons guarantees that each season 

will be represented by only days chosen from that season. Since sampling is done 

with replacement, some days are represented more than once, while other days are not 

represented at all. Next, the data generated for the bootstrap year are used to calculate 
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the composite performance measures for each model. This process is repeated until 

sufficient samples are available to calculate a meaningful standard error for each of the 

model performance statistics. The standard error is calculated as simply the standard 

deviation of the bootstrap generated outcomes for the model comparison measure. 

Selecting the Best Models 

The magnitude and sign of the model comparison measure are indicative of the 

relative performance of each pair of models. The smaller the composite performance 

measure the better the overall performance of the model. This means that for two 

arbitrary models, Model A and Model B, a negative difference between the composite 

performance measure for Model A and Model B implies that model A is performing 

better (Model A has the smaller composite performance measure), while a positive 

value indicates that model B is performing better. When only two models are 

compared, the test statistic is simply the ratio of the composite difference to the 

standard error calculated from the bootstrap outcomes. 

When more than two models are being compared, it is convenient to calculate 

simultaneous confidence intervals for each pair of model comparisons.10 For each pair 

of model comparisons, the significance of the model comparison measure depends 

upon whether or not the confidence interval overlaps zero (0). If the confidence 

interval overlaps zero, the two models are not performing at a level which is 

statistically different. If the confidence interval does not overlap zero, (upper and 

lower limits are both negative or both positive), then there exists a statistically 

significant difference between the two models at the stated level of confidence. 
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The level of confidence chosen has an important impact on the decision. The 

larger the probability or confidence level, the larger the length of the confidence limits 

required to satisfy the confidence statement. Choosing a confidence level that is overly 

demanding (e.g., 99.9999%) would almost surely result in such wide limits that no 

decision could be reached regarding which model(s) are performing better. At the 

other extreme, choosing a confidence level that is very lenient ( e.g., 70%) may lead to 

a decision that one or more models are superior when in fact no real difference exits. 

This choice must be such that the two competing needs are balanced which requires 

judgement from the evaluators. A confidence level in the vicinity of 90 to 95 percent 

represents a reasonable compromise between these two needs. 

Limitations 

This protocol document contains very specific requirements for conducting the 

statistical comparisons believed necessary to compare the performance of models. 

These requirements are based on experiences gained from EPA' s model evaluation 

activities over the past several years. The reader is reminded that there may be more 

logical choices of meteorological conditions and specific weights for compositing 

performance among various data categories. Likewise, the specific test statistic, 

performance measure and range of data may be different depending on the nature of 

the data bases being used and the judgement of those conducting the evaluation. 

4.0 DISPLAY OF RESULTS 

To fully understand the final outcome from applying the methodology, each of the 

component results should be examined. For example the absolute fractional bias does 
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not provide any information about the direction of the bias, i.e., it does not indicate if 

a particular model tends to under or overpredict. Greater understanding about the 

relative performance of each model can be obtained through graphic display of the 

fractional bias for the various data categories used in the evaluation. 

For the screening test, results are displayed graphically using the fractional bias of 

the average vs the fractional bias of the standard deviation as illustrated in Figure 1 

(see reference 2). Information is presented separately for each averaging period and 

each of the data bases used in the analysis. For the statistical test, this is accomplished 

with the use of box diagrams (see Appendix A) which display the magnitude of 

selected percentiles for the fractional bias using the outcomes of the bootstrap process. 

Although these diagrams are not intended for use in making the final decision, they are 

useful in summarizing and presenting the outcome. Also, the scientific results should 

prove useful for the improvement of existing models and in the development of new 

models. 
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APPENDIX A 

EXAMPLE COMPARISON OF MODEL PERFORMANCE 
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A.1 INTRODUCTION

This appendix demonstrates an example application of the protocol for comparing 

models using six data bases available around four large power plants located in the 

midwest. For purposes of this example, MPTER (Version 6) and an alternative point 

source model are evaluated and compared. The MPTER model was chosen since it is the 

EPA preferred model for regulatory applications. The alternative model was chosen as 

a state-of-the-art rural point source model incorporating advanced features for simulating 

plume behavior in flat terrain. 

The six model evaluation data bases used in the analysis consisted of Clifty Creek 

(1975 and 1976), Muskingum River (1975 and 1976), Paradise (1976) and Kincaid 

(1980/1981). The Clifty Creek plant is a coal fired, base-load facility located along the 

Ohio River in southern Indiana. Terrain surrounding the plant consists of low ridges and 

rolling hills at elevations that are below the top of the stacks. Hourly SO2 data is 

available for six monitoring stations located at distances ranging from approximately 3 

15km from the power plant. The Muskingum River plant is also a coal-fired plant, 

located in Ohio surrounded by low ridges and rolling hills. Four SO2 
monitoring stations 

are located at distances ranging from 4 - 20km from the plant. The Paradise plant, located 

in Kentucky, has 12 monitors located at distances from 3 - 17km from the plant. The 

Kincaid plant, located in central Illinois, employed a dense network of SO2 
monitors 

ranging from approximately 2 - 20 km from the plant. Each of these data bases is 

documented in greater detail elsewhere. 1•2•
3
•
4 For each of these data bases, 1, 3 and 24-

hour average measured and predicted concentrations have been assembled for each of the 

operating monitoring stations. In addition, wind speed and atmospheric stability are 
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available for each of the hourly records. An hourly background concentration was 

estimated and subtracted from the measured hourly concentrations using the EPA method.5

In addition, a threshold check is used to eliminate low observed or predicted values that 

have no effect on the performance statistics. For I -hour averages, a threshold value of 

25 µg/m3 is used while, for 3-hour and 24-hour averages, a value of 5 µg/m3 is used. The 

threshold checks are applied independently to the measured and predicted concentrations. 

A.2 SCREENING TEST RESULTS

For each data base, the observed concentrations from all monitoring stations were 

pooled and sorted by averaging period. From the sorted data, the 25 highest observed 

concentrations, unpaired in space or time, were used to calculate a mean and standard 

deviation. The same procedure was applied to the predicted concentrations obtained from 

MPTER (Version 6) and the alternative model. Using these statistics, a fractional bias for 

the mean and a fractional bias for the standard deviation was determined for each model 

for 3-hour averages and for 24-hour averages. 

Figure 1 shows the results in which the fractional bias of the average and fractional 

bias of the standard deviation are plotted for 3-hour averages. For both MPTER (left 

panel) and the alternative model (right panel), the results for all six of the data bases are 

shown. For both models, the predicted and observed averages and standard deviations are 

within a factor-of-two except at Kincaid where underpredictions are apparent. Figure 2 

shows similar results for the 24-hour averages. Again, most of the data points indicate 

performance within a factor-of-two except for the alternative model at Clifty Creek where 

a tendency for overpredictions is evident. Since both models satisfactorily meet the 
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Figure A-1. Fractional bias of the average and standard deviation: 3-hour averages. 
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minimum level of performance, the two models are subjected to a more comprehensive 

statistical comparison. 

A.3 STATISTICAL COMPARISONS

The performance of MPTER is compared with the performance of the alternative 

model using a composite statistical measure that combines the performance within the 

operational component (3-hour and 24-hour averages) and the scientific component (I-hour 

averages). For purposes of the operational component, the observed and predicted 

concentrations were sorted separately by station and averaging period. Using the 25 

largest values, the statistical procedures described in the protocol were applied to calculate 

the robust highest concentration (RHC) at each station. A network based absolute 

fractional bias was computed for each averaging period and model using the largest 

observed RHC and the largest predicted RHC value from among the monitoring stations 

in each data base. 

For the scientific component, six meteorological categories were defined from two 

wind speed categories and three stability categories. The two wind speed categories are: 

low (�.O m/s) and high (>4.0 m/s). The three stability categories are: unstable (class A, 

B, C), neutral (class D), and stable (class E, F). To minimize distortions associated with 

small counts, data categories having fewer than 100 observations were eliminated from 

the analysis. 

The hourly observed and hourly predicted concentrations within each data category 

were sorted. The 25 highest values were used to calculate a separate robust highest 
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concentration for each of the station/meteorological data categories. A composite absolute 

fractional bias was computed by averaging the individual absolute fractional biases. A 

composite performance measure for each model was then calculated by averaging three 

quantities: (1) the absolute fractional bias based on 3-hour averages, (2) the absolute 

fractional bias based on 24-hour averages, and (3) the composite absolute fractional bias 

based on 1-hour averages. The difference between the composite performance measure 

for MPTER and the alternative model (Model comparison measure) is actually the statistic 

used in judging the overall difference in performance between the two models. 

Following the procedure outlined in the protocol, 100 bootstrap trial years were 

generated.* For each trial year, the statistics and model performance measures described 

above were recalculated resulting in 100 sets of statistical outputs. The statistics in each 

set included the fractional biases, absolute fractional biases, composite absolute fractional 

biases, composite performance measure and the differences between the composite 

performance measures for MPTER and the alternative model. For this example 

demonstration, a confidence level of 90 percent was selected for determining statistical 

significance for the difference in performance between the two models. 

A.4 STATISTICAL RESULTS: CLIFTY CREEK

Figure 3 presents an example comparison of the bias for the two models using the 

1975 Clifty Creek data. The figure presents the results for 1-, 3- and 24-hour averages 

*The number of bootstrap trials was limited to 100 by available computing resources.
Nominally, 500 to 1000 bootstrap trials would be used if computational resources were 
not a prime consideration. 
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in terms of the RHC test statistic for Clifty Creek(l975). The data displayed consists of 

the fractional bias for each averaging period along with the 5th and 95th percentiles 

resulting from the bootstrap. The results for 1-hour averages is the composite average 

over the individual stations and six meteorological conditions, while the 3-hour and 24-

hour results are based on the largest RHC test statistic across the six monitoring stations. 

The composite 1-hour fractional bias indicates an overall tendency for MPTER to 

underpredict peak 1-hour concentrations at Clifty Creek.• Since the upper and lower 

percentiles are far above the zero reference line, the underpredictions are "significant" in 

a statistical sense. Composite I-hour results for the alternative model indicate a clear 

tendency for overprediction at Clifty Creek. For 3-hour averages, MPTER appears to be 

essentially unbiased while the alternative model shows a tendency for overpredictions. 

For 24-hour averages, MPTER shows a tendency for modest underpredictions while the 

alternative model shows a clear tendency for overprediction. The overall composite 

fractional bias shown in the last panel suggests a tendency for underpredictions by 

MPTER and overpredictions by the alternative model. The composite underprediction by 

MPTER is dominated by the 1-hour results while the composite overpredictions by the 

alternative model are more evenly spread across each of the three averaging periods. 

Table I summarizes the results of the comparison in performance between the two models 

in terms of the absolute fractional bias for each averaging period. The ratio of the 

difference between the two models to the standard error provides a rough measure of the 

statistical significance of the difference in composite performance between the two 

*For I-hour concentrations unpaired in space or time, both models actually overpredict
the observed I -hour t;oncentrations. If ambient standards existed for 1-hour average data, 
the operational component of this evaluation would include 1-hour average comparisons 
equivalent to those described for 3-hour and 24-hour averages. 
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Table A-1. Composite Performance of MPTER and the Alternative Modelfor Six Rural Data Bases 

Data
Base
Clif cree1 (1975)

CliftyCreek (1976)

Averaging
Period

1-hr3-hr24-hr
Composite

1-hr3-hr24-hr
Composite

MuskingumRiver (1975)
1-hr3-hr24-hr

Composite

MuskingumRiver (1976)
1-hr3-hr24-hr

Composite

Paradise(1976) 

Kincaid (1980/81)

1-hr3-hr24-hr
Composite

1-hr3-hr
24-hr

Composite

Grand Composite.
(All 6 Data Bases)

Absolute Fractional Bias
MP1'ER 

0.810.010.31
0.37

0.580.250.12
0.41

1.040.100.08
0.40

0.540.040.34
0.44

1.250.090.25
0.53

0.680.290.29
0.42

0.43

Alternate
0.830.710.64
0.73

0.470.730.91
0.78

0.600.220.02
0.28

0.380.110.03
0.23

0.750.550.48
0.59

0.590.530.69
0.60

0.54

A-10

Diff. !d)
-0.02-0.70-0.33
-0.35

0.11-0.48-0.79
-0.37

0.43-0.120.06
0.12

0.41-0.060.31
0.21

0.50-0.46-0.23
-0.06

0.09-0.24-0.40
-0.18

-0.11

Std. Dev. !s)
0.050.140.24
0.10

0.040.120.14
0.07

0.070.150.17
0.08

0.080.100.12
0.05

0.030.100.14
0.13 

0.040.390.35
0.22

0.05

Ratio (d/s)
-0.4-5.0-1.4
-3.5

2.8
-4.0-5.6
-5.3

6.1-0.80.4
1.5

5.1-0.62.6
4.2

16.7-4.6-1.6
-0.5

2.2-0.6-1.1
-0.8
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models. Absolute values for the ratio that exceed a nominal value of 1.7 indicate 

significance at approximately the 90 percent confidence level. For the Clifty Creek 1975 

data base, the composite results indicates that the overall performance of MPTER is 

significantly better than the performance of the alternative model. The difference between 

the composite absolute fractional bias statistics for the two models is -0.35 which is 3.5 

times as large as the standard error for the difference. Before discussing the results for 

all six data bases, it is instructive to examine the results at Clifty Creek more closely. 

Although the composite difference between the two models is large, there are noticeable 

differences among the three averaging periods. For 1-hour averages, the two models 

performed about the same but for different reasons. By referring to Figure 3, it is clear 

that underpredictions by MPTER and overpredictions by the alternative model are of 

approximately the same magnitude. The net effect is that both models are penalized by 

approximately the same degree. The performance of the two models for 3-hour averages 

appears to be the dominant factor contributing to the overall difference. The fractional 

bias for MPTER is essentially zero while for the alternative model the fractional bias is 

0.71 leading to a large difference compared with its standard error (-0.70 vs. 0.14). For 

24-hour averages, MPTER is also the better performing model. The absolute fractional

bias for MPTER is low (0.31) but not significantly lower than for the alternative model 

(0.64). 

A.5 STATISTICAL RESULTS: ALL DATA BASES

The relative performance between the two models varies somewhat among the six 

data bases. The ratio of the composite difference to its standard error ranged from -5.3 

at Clifty Creek (1976) to 4.2 at Muskingum (1976). At Clifty Creek, MPTER clearly 
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performs better than the alternative model while at Muskingum River, the alternative 

model performs at least as well or better than MPTER. For Paradise and Kincaid the 

composite results indicate that MPTER is performing slightly better than the alternative 

model; however, the results are not statistically significant. The grand composite result 

over the six data bases indicates that MPTER performs statistically better than the 

alternative model. The composite difference between the two models is -0.11 which is 

more than twice the estimated standard error. 

Figures 4 and 5 present the composite results graphically for each averaging period 

and for the overall grand composite. Clearly, the overall tendency is for MPTER to 

perform better for 3-hour and 24-hour averages ( operational component), while the 

alternative model performs better for I-hour averages (scientific component). The 

composite statistics shown in the last panel of Figures 4 and 5 suggest that the better 

performance of MPTER in the operational component more than compensates for the 

better performance by the alternative model in the scientific component. Note that in this 

example comparison, the overall statistical significance was small and also there were 

rather large differences in performance between data bases. In practice, these facts might 

be taken into consideration when choosing the model for applications and/or in 

considering whether additional data were necessary before arriving at a final decision. 
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Figure A-4. Absolute fractional bias and bootstrap percentiles (5 and 95), composite for six inventories: 
MPTER and Alternate Model 
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Figure A-5. Absolute fractional bias and bootstrap percentiles (5 and 95), composite difference for six inventories: 
MPTER and Alternate Model 
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